MARKING SCHEME (PRACTICE PAPER 1)

SECTION – A

Q.No	Value point	Marks
1(i)	b	1
(ii)	d	1
(iii)	В	1
(iv)	D	1
2(i)	В	1
(ii)	Α	1
(iii)	Α	1
(iv)	Α	1
3	С	1
4	A OR C	1
5	D	1
6	В	1
7	Α	1
8	D OR B	1
9	A OR C	1
10	С	1
11	C OR A	1
12	В	1
13	A OR A	1
14	A	1
15	А	1
16	В	1

Q.No		
	SECTION - B	
17	 (i) It is due to double bond character in chlorobenzene due to resonance which is difficult to break as compared to single bond (C – Cl) in CH3Cl. (ii) - NO₂ group is an electron withdrawing group, it stablises the carbanion formed During nucleophilic substitution of chlorobenzene. OR	
	(i) CH ₃ CH ₂ OH SOCl ₂ , Pyridine CH ₃ CH ₂ CI -AgCl -AgCl	
	(ii) $CH_3 - CH = CH_2$ HBr, Peroxide $CH_3 - CH_2 - CH_2 - Br$ $CH_3 - CH_2 - CH_2 - Br$ $CH_3 - CH_3 - CH_3$	
18		
	XeO ₃ HCIO ₃	
19	$M^{2+} = 91.7\%$, $M^{3+} = 8.3\%$	
	1VI = 51.770, 1VI = 0.570	
20	Mixtures of liquids having the same composition in liquid and vapour phase and Boiling at a constant temperature are called azeotropes. It is not possible to separate the components of an azeotrope by fractional distillation. The solutions which shows negative deviation from Raoult's law form maximum Boiling azeotropes. Acetone-Chloroform is an example of this type of azeotrope.	
21	Since this is an optically active compound, the three alkyl groups attached to central	
	C -atom have to be different. Thus, the compound has the structure.	
	CH_3 $C_2H_5 - C - Br$ C_3H_7	
	Mechanism of the reaction (SN1) $\begin{array}{c} CH_3 & CH_3 \\ C_2H_5 - C & Br & Slow \\ \hline C_3H_7 & C_2H_5 & C_3H_7 \end{array}$	
	$\begin{array}{c} \text{Carbocation} \\ \text{CH}_3 \\ \text{HO} - C - C_2 H_5 \xleftarrow{\text{OH}^-} \underbrace{\begin{array}{c} \text{CH}_3 \\ \text{C}_2 \text{H}_5 \\ \text{C}_3 \text{H}_7 \end{array}} \xrightarrow{\text{CH}_3} \underbrace{\begin{array}{c} \text{CH}_3 \\ \text{C}_2 \text{H}_5 - \text{C} - \text{OH} \\ \text{C}_3 \text{H}_7 \end{array}} \xrightarrow{\text{Carbocation}} \\ \begin{array}{c} \text{CH}_3 \\ \text{Frontal attack} \\ \text{C}_3 \text{H}_7 \\ \text{C}_3 \text{H}_7 \\ \text{Carbocation} \\ \end{array}$	
L	u-tom embound Plom	

22	Kolbe's reaction				
	ONa OH OH				
	J. J				
	+ CO ₂ $\xrightarrow{400 \text{ K}}$ COONa Dil. HCl				
	101 00000				
	Sod. phenoxide Sod. salicylate 2-Hydroxybenzoic acid (Salicylic acid, major product)				
	Williamson's ether synthesis				
	Williamson's ether synthesis				
	$R-X + R'-ONa \longrightarrow R-O-R' + NaX$				
23	(i) Coagulation and Peotisation: The process of setting of colloidal particles is called				
	Coagulation. Peptization is the process of conversion of precipitate into colloidal sol.				
	(ii) Lyophilic and Lyophobic: 'Lyophilic' means liquid loving, lyophilic sols are prepared directly by mixing Substances like gum, gelatine, starch,rubber, etc with the liquid dispersion medium. Lyophobic means liquid hating, They cannot be prepared directly, they are prepared				
	By special methods only.				
	OR				
	Colloidal system Dispersed phase Dispersion medium				
	(i) Smoke Solid (Carbon) Gas(Air)				
	(ii) Milk Liquid (fat) Liquid (water)				
24	(i) Diamminedichlorido(ethane-1,2-diamine)chromium(III) chloride				
24	(ii) [Co(NH ₃) ₅ (ONO)] ²⁺				
	OR				
	Since the coordination number of Mn2+ ion in the complex ion is 4, it will be either				
	tetrahedral (sp3 hybridisation) or square planar (dsp2 hybridisation). But the fact that the				
	magnetic moment of the complex ion is 5.9 BM, it should be tetrahedral in shape rather than				
	square planar because of the presence of five unpaired electrons in the d orbitals.				
25	(i) Electrophoresis takes place				
CECT	(ii) Coagulation of the sol takes place and a precipitate of Fe(OH)3 is obtained.				
SECTION					
26	(a) I -Cl bond is weaker than I-I and Cl – Cl bond.				
	(b) Bi has +5 oxidation state in NaBiO3. +3 O.S of Bi is more stable than +5 due to				
	inert pair effect				
	(C) Noble gases are monoatomic and their atoms are held together by weak dispersion forces.				
	עוסאברסוטוז וטועבט.				

of alpha another in a estroyed but alt is caused by 7 electrons
another in a estroyed but .It is caused by
estroyed but .It is caused by
estroyed but .It is caused by
estroyed but .It is caused by
.It is caused by
.It is caused by
.It is caused by
7 electrons
7 electrons
-
ticipated in
e configuration.
nore stable as
nsition
)
r base than
ocalized over
nsity on
sity on nitrogen
tion with
Strong electrolyte
Weak electrolyte
√C
on dilution
is increase.
) : On s

Fe(s)
$$\longrightarrow$$
 Fe²⁺(aq) + 2e⁻

$$2H^{+}(aq) + 2e^{-} \longrightarrow H_{2}(g)$$
Fe(s) + 2H⁺(aq) \longrightarrow Fe²⁺(aq) + H₂(g)

Here, $n = 2$

$$E_{Cell} = E^{\circ}_{Cell} - \frac{0.0591}{2} \log \frac{[Fe^{2+}]}{[H^{+}]^{2}}$$

$$= (E^{\circ}_{H^{+}/H_{2}} - E^{\circ}_{Fe^{2+}/Fe}) - \frac{0.0591}{2} \log \frac{10^{-3}}{[10^{-2}]^{2}}$$

$$= [0 - (-0.44 \text{ V})] - \frac{0.0591}{2} \log 10$$

$$= +0.44 \text{ V} - 0.0295$$

$$= 0.4105 \text{ V}.$$

OR

Kohlrausch law states that limiting molar conductivity of an electrolyte can be represented as sum of the individual contributions of the anion and cation of the electrolyte.

$$\Lambda^{\circ}_{m}(HCOOH) = \lambda^{\circ}_{m} HCOO^{-} + \lambda^{\circ}_{m} H^{+}$$

$$\wedge_{m}^{\circ}$$
 (HCOOH) = λ° (H⁺) + λ° (HCOO⁻) = 349·6 + 54·6 S cm² mol⁻¹ = 404·2 S cm² mol⁻¹
 \wedge_{m}^{c} = 46·1 S cm² mol⁻¹ (Given)

$$\alpha = \frac{\wedge_m^c}{\wedge_m^0} = \frac{46\cdot 1}{404\cdot 2} = 0.114$$

Initial conc.
$$c \mod L^{-1}$$

Conc. at eqm. $c (1-\alpha)$ $c \alpha$ $c \alpha$

Conc. at eqm.
$$c(1-\alpha)$$
 $c \alpha c \alpha$

$$K_a = \frac{c \alpha . c \alpha}{c (1-\alpha)} = \frac{c \alpha^2}{1-\alpha} = \frac{0.025 \times (0.114)^2}{1-0.114} = 3.67 \times 10^{-4}$$

 $C_6H_5CHO(A)$, $C_6H_5COONa \& C_6H_5CH_2OH(B \& C)$, $C_6H_5CH = NNHCONH_2(D)$, 32 $C_6H_5CH(OH)CH_3$ (E)

OR

- (i) CH₃CH(CN)OH
- (ii) CH₃CH(OH)CH₂CH₃
- (iii) CH₃CH₃
- (b) Ethanal > Propanal > Propanone > Butanone
- (c) Propanal gives red -brown ppt with Fehling's reagent / Propanal gives silver mirror test but propanone does not react both of these reagents.

(a)

$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$$

Substituting the values, we have

$$k = \frac{2.303}{40} \log \frac{100}{70}$$

or

$$k = \frac{2.303}{40} \times 0.1549 = 0.0089 \text{ min}^{-1}$$

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.0089} = 77.86 \text{ minutes}$$

(b) Suppose order w.r.t A is α and w.r.t B is β

Rate =
$$k[A]^{\alpha}[B]^{\beta}$$

$$(Rate)_{expt \ 1} = 6.0 \times 10^{-3} = k \ (0.1)^{\alpha} \ (0.1)^{\beta}$$

(Rate)_{expt 2} =
$$7.2 \times 10^{-2} = k (0.3)^{\alpha} (0.2)^{\beta}$$

(Rate)_{expt 3} = $2.88 \times 10^{-1} = k (0.3)^{\alpha} (0.4)^{\beta}$

$$(\text{Rate})_{\text{expt 4}} = 2.4 \times 10^{-2} = k (0.4)^{\alpha} (0.1)^{\beta}$$

$$\frac{(\text{Rate})_{\text{expt 1}}}{(\text{Rate})_{\text{expt 4}}} = \frac{6.0 \times 10^{-3}}{2.4 \times 10^{-2}} = \frac{k (0.1)^{\alpha} (0.1)^{\beta}}{k (0.4)^{\alpha} (0.1)^{\beta}} \quad \text{or} \quad \frac{1}{4} = \frac{(0.1)^{\alpha}}{(0.4)^{\alpha}} = \left(\frac{1}{4}\right)^{\alpha} \quad \text{or} \quad \alpha = 1$$

or
$$\frac{1}{4} = \frac{(0.1)^{\alpha}}{(0.4)^{\alpha}} = \left(\frac{1}{4}\right)^{\alpha}$$
 or $\alpha = 1$

$$\frac{(\text{Rate})_{\text{expt 2}}}{(\text{Rate})_{\text{expt 3}}} = \frac{7.2 \times 10^{-2}}{2.88 \times 10^{-1}} = \frac{k (0.3)^{\alpha} (0.2)^{\beta}}{k (0.3)^{\alpha} (0.4)^{\beta}} \quad \text{or} \quad \frac{1}{4} = \frac{(0.2)^{\beta}}{(0.4)^{\beta}} = \left(\frac{1}{2}\right)^{\beta}$$

$$\frac{1}{4} = \frac{(0.2)^{\beta}}{(0.4)^{\beta}} = \left(\frac{1}{2}\right)^{\beta}$$

or
$$\left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^{\beta}$$

k can be calculated as in the first method. Rate law expression is: Rate = $k [A] [B]^2$.

OR

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

For three-fourth of the reaction to take place, $[R] = \frac{[R]_0}{4}$ or $\frac{[R]_0}{[R]} = 4$

Substituting the values in the rate equation, we have

$$2.54 \times 10^{-3} = \frac{2.303}{t} \log 4$$

or

$$t = \frac{2.303}{2.54} \times 10^3 \times 0.6021 = 5.46 \times 10^2 \text{ s}$$

- (b) (i) dx/dt = k[A][B]2
 - (ii) 9 times
 - (iii) 8 times